An investigation of multi-domain hysteresis mechanisms using FORC diagrams
نویسندگان
چکیده
First-order reversal curve (FORC) diagrams provide a sensitive means of probing subtle variations in hysteresis behaviour, and can help advance our understanding of the mechanisms that give rise to hysteresis. In this paper, we use FORC diagrams to study hysteresis mechanisms in multi-domain (MD) particles. The classical domain wall (DW) pinning model due to Néel [Adv. Phys. 4 (1955) 191] is a phenomenological one-dimensional model in which a pinning function represents the interactions of a DW with the surrounding medium. Bertotti et al. [J. Appl. Phys. 85 (1999a) 4355] modelled this pinning function as a random Wiener–Lévy (WL) process, where particle boundaries are neglected. The results of Bertotti et al. [J. Appl. Phys. 85 (1999a) 4355] predict a FORC diagram that consists of perfectly vertical contours, where the FORC distribution decreases with increasing microcoercivity. This prediction is consistent with our experimental results for transformer steel and for annealed MD magnetite grains, but it is not consistent with results for our MD grains that have not been annealed. Here, we extend the DW pinning model to include particle boundaries and an Ornstein–Uhlenbeck (OU) random process, which is more realistic that a WL process. However, this does not help to account for the hysteresis behaviour of the unannealed MD grains. We conclude that MD hysteresis is more complicated than the physical picture provided by the classical one-dimensional pinning model. It is not known what physical mechanism is responsible for the breakdown of the classical DW pinning model, but possibilities include DW interactions, DW nucleation and annihilation, and DW curvature. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Magnetic Properties of Fe49Co33Ni18Nanowire ArraysStudied by First-Order Reversal Curve Diagrams
Fe49Co33Ni18 nanowire arrays (175 nm in diameter and lengths ranging from 5 to 32μm) were fabricated into nanopores of hard-anodized aluminum oxide templates using pulsed ac electrodeposition technique. Hysteresis loop measurements indicated that increasing the length decreases coercivity and squareness values (from 274 Oe and 0.58 to200 Oe and 0.105, respective...
متن کاملInvestigation of the magnetic interactions in Co2FeAl alloy nanoparticles using FORC analysis
This paper demonstrates the results of the detailed studying of the magnetic behavior of Co2FeAl alloy nanoparticles synthesized through a co-precipitation method. First order reversal curves (FORCs) diagrams were used consequently. The obtained results showed that the prepared alloys consist of a mixture of the low-coercivity grains (Hc ~ 0), and interacting single-domain high-coercivity grain...
متن کاملUnderstandingfinemagnetic particle systems through use of first-order reversal curve diagrams
First-order reversal curve (FORC) diagrams are constructed from a class of partial magnetic hysteresis loops known as first-order reversal curves and are used to understand magnetization processes in fine magnetic particle systems. A wide-ranging literature that is pertinent to interpretation of FORC diagrams has been published in the geophysical and solid-state physics literature over the past...
متن کاملFingerprinting hysteresis
We test the predictive power of first-order reversal curve (FORC) diagrams using simulations of random magnets. In particular, we compute a histogram of the switching fields of the underlying microscopic switching units along the major hysteresis loop, and compare to the corresponding FORC diagram. We find qualitative agreement between the switching-field histogram and the FORC diagram, yet dif...
متن کاملProbing Magnetic Configurations in Artificially Structured Nanomagnets
Last year's Nobel Prize in Physics has showcased the vibrant research on magnetic nanostructures. Such artificially structured materials often exhibit novel and tunable properties as their physical dimensions become comparable to certain characteristic length scales. In this talk I will illustrate a variety of custom-designed magnetic nanostructures and highlight our recent studies of the magne...
متن کامل